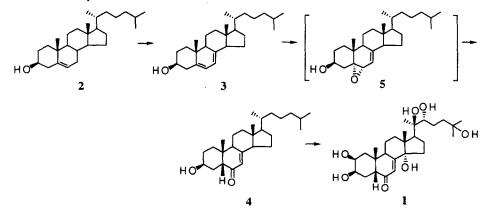


PII: S0040-4039(97)00432-2


Biosynthesis of 20-Hydroxyecdysone in Ajuga Hairy Roots: Hydrogen Migration from C-6 to C-5 during cis-A/B Ring Formation[†]

Yoshinori Fujimoto,* Tetsuo Kushiro and Kinya Nakamura

Department of Chemistry, Tokyo Institute of Technology, Meguro, Tokyo 152, Japan

Abstract: Feeding of deuterium labeled cholesterols including $[6-^2H]$ cholesterol and $[3\alpha, 6-^2H_2]$ cholesterol to hairy roots of Ajuga reptans var. aropurpurea followed by ²H-NMR analysis of the biosynthesized 20-hydroxyecdysone revealed that most of the deuterium atom located at C-6 of cholesterol migrated to the C-5 position of 20-hydroxyecdysone. © 1997 Elsevier Science Ltd.

20-Hydroxyecdysone (1) is the molting hormone of most arthropods and it is also distributed in the plant kingdom. The structure of the steroidal hormone is characterized by a *cis*-A/B ring junction, a 7-en-6-one conjugated system, and polyhydroxyl groups. In insects, accumulated evidence suggests that 20-hydroxy-ecdysone is biosynthesized from cholesterol (2) *via* 7-dehydrocholesterol (3) and 3β , 14 α -dihydroxy-5 β -cholest-7-en-6-one (5 β -ketodiol).¹ However, the mechanism of the earlier stage of this transformation, *i.e.*, formations of the *cis*-A/B ring junction and 7-en-6-one system, remains unclear. The possibility of a 5α , 6α -epoxide intermediate, *e.g.*, 7-dehydrocholesterol 5 α , 6α -epoxide (5), has been suggested repeatedly, without conclusive experimental evidence.²⁻⁶

Scheme 1. Proposed biosynthetic pathway of 20-hydroxyecdysone in Ajuga hairy roots.

We demonstrated previously that hairy roots of Ajuga reptans var. atropurpurea⁷ is a suitable tool for biosynthetic studies of phytoecdysteroids,⁸ and subsequently reported on the possible intermediary role of 3β -hydroxy- 5β -cholest-7-en-6-one (5β -ketol, 4) in 20-hydroxyecdysone biosynthesis, based on its positive

incorporation and the behavior of 3α -, 4α - and 4β -hydrogens of cholesterol (they were all retained at their original positions).⁹ Scheme 1 shows a postulated biosynthetic pathway of 20-hydroxyecdysone in this tissue culture.^{9,10} In this paper, we report on the origin of 5 β -hydrogen of 20-hydroxyecdysone in *Ajuga* hairy roots. The finding presented herein strongly supports the involvement of a 5 α , 6 α -epoxide in the *cis*-A/B ring formation in plants.

Since neither 4α - nor 4β -hydrogen was found to migrate to the C-5 position of 1 in *Ajuga* hairy roots, the possible source of the 5 β -hydrogen of 1 appeared to be limited to the following three: (a) C-6 hydrogen of cholesterol, (b) hydrogen atom from water, and (c) hydrogen atom from a reducing cofactor such as NADPH. To examine these possibilities, $[6^{-2}H]$ cholesterol (~99% labeled at the C-6 position)¹¹ was first fed to *Ajuga* hairy roots and the biosynthesized 20-hydroxyecdysone was isolated as described previously.⁸ The ²H-NMR spectrum (Fig. 1) of the 20-hydroxyecdysone showed a peak at δ 2.9, which corresponds to the signal of H-5¹² of 20-hydroxyecdysone. The result clearly indicated that H-6 of cholesterol migrated to the C-5 position of 1 during the bioconversion. The 1,2-hydrogen shift seems likely to occur at the stage between 7-dehydro-cholesterol and 5 β -ketol, *i.e.*, during *cis*-A/B ring formation of 1, since H-5 of 5 β -ketol was previously shown to be retained there during the conversion into 20-hydroxyecdysone.⁹

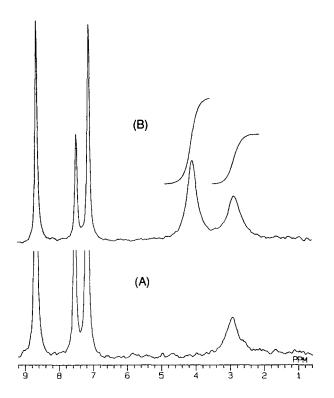


Fig. 1 ²H-NMR spectra (77 MHz, pyridine) of 20-hydroxyecdysone obtained by feeding $[6^{-2}H]$ cholesterol (A) and $[3\alpha, 6^{-2}H_2]$ cholesterol (B) to Ajuga hairy roots. The signal of H_B of pyridine was referenced as δ =7.19.

To confirm the hydrogen migration and to examine the relative efficiency of the incorporation, a 1:1 mixture of [4B-²H]-cholesterol (~99% labeled at the C-4 position)¹³ and [6-²H]cholesterol was then fed to the hairy roots. The ²H-NMR spectrum of the resulting 20-hydroxyecdysone showed two peaks at δ 2.0 (corresponding to the signal of H-4 β of 1) and δ 2.9 in a α . 3:2 ratio of signal intensity (data not shown). This data further verified the hydrogen migration from the C-6 to C-5 position. However, unexpectedly, α . 1/3 of the 5 β -hydrogen of 1 was shown to arise from another hydrogen source. The possibility of a deuterium isotope effect (provided that the C-H bond cleavage at C-6 is involved in a rate-determining step) may be raised to explain the behavior of H-6 of cholesterol. Thus, a doubly-labeled compound, $[3\alpha, 6^{-2}H_2]$ cholesterol, was chosen as the next substrate and synthesized from 5α -cholestane-3,6-dione in four steps (reduction with LiAlD₄, protection of the β -ol as benzoate, dehydration of the β -ol with POCl₃, and deprotection of the benzoate, overall yield 35%). The ²H-NMR spectrum of 1, obtained after feeding the doubly-labeled cholesterol, is illustrated in Fig. 1, which exhibited two peaks at $\delta 4.2$ (corresponding to H-3 of 1) and $\delta 2.9$ in a a. 3:2 ratio. The upper-field signal again confirmed that most of the C-6 deuterium atom of the substrate migrated to the C-5 position. It should be noted that the behavior of the C-6 deuterium is essentially the same as that found in a 1:1 mixture of $[4\beta^2H]$ - and $[6^2H]$ cholesterols. The postulated deuterium isotope effect is, therefore, unlikely to be the main factor for the partial loss of the C-6 deuterium atom of 2; rather, the presence of an unidentified mechanism is suggested. A preliminary study indicated that 5β -hydrogen of 1 is not exchanged by an exogenous proton source during extraction and isolation of 1 via enolization. Although it is not clear whether an alternative mechanism exists for the formation of the cis-A/B ring or the partial loss takes place during the 1,2-hydrogen migration in an enzyme cage, the partial disappearance of the C-6 deuterium atom of cholesterol is likely to occur during the formation of the cis-A/B ring.

In conclusion, we have offered unambiguous evidence for the origin of 5 β -hydrogen o₁ 20-hydroxyecdysone in *Ajuga* hairy roots, although the non-stoichiometric behavior of H-6 of cholesterol remains an open question. The observed 1,2-hydrogen shift agrees with the postulated 7-dehydrocholesterol 5 α , 6 α -epoxide intermediate (5), since it reasonably explaines the generation of 5 β -stereochemistry and 6-oxo function of 5 β -ketol as well as 20-hydroxyecdysone. Attempted feeding of 5 was not successful since this compound rapidly decomposed under incubation conditions.¹⁴

The origin of 5 β -hydrogen in *Ajuga* hairy roots is in sharp contrast with that reported in the fern *Polypodium vulgare* in which 4 β -hydrogen of cholesterol migrates to the C-5 position.¹⁵ We previously reported that H-6 of cholesterol was lost during the formation of ecdysone and 2-deoxyecdysone in *Locust migratoria*.³ Further, Goodwin *et al.* reported that 4 β -hydrogen of cholesterol is lost in Locust, *Sistocerica migratoria*.¹⁶ Quite interestingly, these data suggest that the *cis*-A/B ring of ecdysteroids is biosynthesized not by a single mechanism but at least three mechanisms depending on the species of plants and insects.

ACKNOWLEDGMENTS We thank Drs. T. Matsumoto and N. Tanaka, Bioassay Laboratory, Research Center, Daicel Chemical Industries Ltd., for providing *Ajuga* root culture and helpful suggestions on incubation conditions. This work was partially supported by a Grant-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Science, Sports and Culture.

REFERENCES AND NOTES

† This paper is dedicated to Professor Nobuo Ikekawa on the occasion of his 70th birthday.

- 1. Grieneisen, M. L. Insect Biochem. Molec. Biol., 1994, 24, 115-132.
- Rees, H. H. Biosynthesis of Ecdysone. In Comprehensive Insect Physiology, Biochemistry and Pharmacology, eds. Kerkut, G. A.; Gilbert, L. I. Vol. 7; Pergamon Press, Oxford, 1985; pp. 249-269.
- 3. Fujimoto, Y.; Hiramoto, M.; Kakinuma, K.; Ikekawa, N. Steroids, 1989, 53, 477-485.
- 4. S. Sakurai, J. T. Warren, and L. I. Gilbert, Archs. Insect Biochem. Physiol., 1990, 10, 179-197.
- 5. Grieneisen, M. L.; Warren, J. T.; Sakurai, S.; Gilbert, L. I. Insect Biochem., 1991, 21, 41-51.
- 6. Grieneisen, M. L.; Warren, J. T.; Gilbert, L. I. Insect Biochem. Molec. Biol., 1993, 23, 13-23.
- 7. Matsumoto, T.; Tanaka, N. Agric. Biol. Chem., 1991, 55, 1019-1025
- Nagakari, M.; Kushiro, T.; Matsumoto, T.; Tanaka, N.; Kakinuma, K.; Fujimoto, Y. *Phytochemistry*, 1994, 36, 907-910.
- 9. Nagakari, T. Kushiro, T. Yagi, N. Tanaka, T. Matsumoto, K. Kakinuma and Y. Fujimoto, J. Chem. Soc., Chem. Commun., 1994, 1761-1762.
- 10.[4-¹³C]-7-Dehydrocholesterol was incorporated into 20-hydroxyecdysone, Kushiro, T.; Fujimoto, Y.; unpublished results.
- 11. Stoilov, I. L.; Thompson, J. E.; Cho, J. -H.; Djerassi, C. J. Am. Chem. Soc., 1986, 108, 8235-8241.
- 12. Girault, J. P.; Lafont, R. J. Insect Physiol., 1988, 34, 701-706.
- 13. Lockley, W. J. S.; Rees, H. H.; Goodwin, T. W. J. Labelled Compd. Radiopharm., 1978, 15, 413-432.
- The epoxide 5 decomposed in the incubation medium within a few days, Nakamura, K.; Fujimoto, Y., unpublished results. For the preparation and chemical reactivity of compound 5, see Michaud, D. P., Nashed, N. T.; Jerina, D. M. J. Org. Chem., 1985, 50, 1835-1840.
- Davies, T. G.; Lockley, W. J. S.; Boid, R.; Rees, H. H.; Goodwin, T. W. Biochem. J., 1980, 190, 537-544.
- 16. Davies, T. G.; Dinan, L. N.; Lockley, W. J. S.; Rees, H. H.; Goodwin, T. W. Biochem. J., 1981, 194, 53-62.

(Received in Japan 21 January 1997; revised 24 February 1997; accepted 28 February 1997)