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Biosynthesis of 20-Hydroxyecdysone in Ajuga Hairy Roots: Hydrogen 
Migration from C-6 to C-5 during cis.A/B Ring Formationt 

Yoshinori Fujtmoto, Tetsuo Kushiro and Kinya Nakamura 

Department of Chemistry, Tokyo Institute of Technology, Meguro, Tokyo 152, Japan 

Abstract: Feeding of deuterium labeled cholesterols including [6-2H]cholesterol and [3ct,6-2H2 I- 
cholesterol to hairy roots of Ajuga reptans var. atropurpurea followed by 2H-NMR analysis of the 
biosynthesized 20-hydroxyecdysone revealed that most of the deuterium atom located at C-6 of 
cholesterol migrated to the C-5 position of 20-hydraxyecdysone. © 1997 Elsevier Science Ltd. 

20-Hydroxyecdysone (1) is the molting hormone of most arthropods and it is also distributed in the plant 

kingdom. The structure of the steroidal hormone is characterized by a cis-AIB ring junction, a 7-en-6-one 

conjugated system, and polyhydroxyl groups. In insects, accumulated evidence suggests that 20-hydroxy- 

ecdysone is biosynthesized from cholesterol (2) via 7-dehydrocholesterol (3) and 3[3,14~-dihydroxy- 

513-cholest-7-en-6-one (5~-ketodiol).l However, the mechanism of the earlier stage of this transformation, 

i.e., formations of the cis-A/B ring junction and 7-en-6-one system, remains unclear. The possibility of a 

5et,6ct-epoxide intermediate, e.g., 7-dehydrocholesterol 5a.,6tx-epoxide (5), has been suggested repeatedly, 

without conclusive experimental evidence. 2"6 
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Scheme !. Proposed biosynthetic pathway of 20-hydroxyecdysone in Ajuga hairy roots. 

We demonstrated previously that hairy roots of Ajuga reptans vat. atropurpurea 7 is a suitable tool for 

biosynthetic studies of phytoecdysteroids, 8 and subsequently reported on the possible intermediary role of 

3[3-hydroxy-5~-cholest-7-en-6-one (513-ketol, 4) in 20-hydroxyecdysone biosynthesis, based on its positive 
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incorporation and the behavior of 3~-, 4(x- and 4[3-hydrogens of cholesterol (they were all retained at their 

original positions). 9 Scheme 1 shows a postulated biosynthetic pathway of 20-hydroxyecdysone in this tissue 

culture. 9'10 In this paper, we report on the origin of 5~-hydrogen of 20-hydroxyecdysone in Ajuga hairy 
roots. The finding presented herein strongly supports the involvement of a 5ct,6ot-epoxide in the cis-AlB ring 

formation in plants. 

Since neither 4c~- nor 41J-hydrogen was found to migrate to the C-5 position of 1 in Ajuga hairy roots, the 

possible source of the 5[5-hydrogen of 1 appeared to be limited to the following three: (a) C-6 hydrogen of 

cholesterol, (b) hydrogen atom from water, and (c) hydrogen atom from a reducing cofactor such as NADPH. 

To examine these possibilities, [6-2H]cholesterol (-99% labeled at the C-6 position) 11 was first fed to Ajuga 
hairy roots and the biosynthesized 20-hydroxyecdysone was isolated as described previously. 8 The 2H-NMR 

spectrum (Fig. 1) of the 20-hydroxyecdysone showed a peak at 6 2.9, which corresponds to the signal of 

H-512 of 20-hydroxyecdysone. The result clearly indicated that H-6 of cholesterol migrated to the C-5 position 

of I during the bioconversion. The 1,2-hydrogen shift seems likely to occur at the stage between 7-dehydro- 

cholesterol and 5[~-ketol, i.e., during cis-A/B ring formation of 1, since H-5 of 5~-ketol was previously 

shown to be retained there during the conversion into 20-hydroxyecdysone. 9 
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Fig. 1 2H-NMR spectra (77 MHz, pyridine) of 20-hydroxyecdysone obtained by feeding 

[6-2H]cholesterol (A) and [3c~,6-2H2]cholesterol (B) to Ajuga hairy roots. 

The signal of HI5 of pyridine was referenced as 8=7.19. 
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To confirm the hydrogen migration and to examine the relative efficiency of the incorporation, a 1:1 

mixture of [4[3-2H]-cholesterol (~99%'labeled at the C-4 position) 13 and [6-2H]cholesterol was then fed to the 

hairy roots. The 2H-NMR spectrum of the resulting 20-hydroxyecdysone showed two peaks at 8 2.0 

(corresponding to the signal of H-413 of 1) and 8 2.9 in a ca. 3:2 ratio of signal intensity (data not shown). 

This data further verified the hydrogen migration from the C-6 to C-5 position. However, unexpectedly, ca. 

1/3 of the 513-hydrogen of I was shown to arise from another hydrogen source. The possibility of a deuterium 

isotope effect (provided that the C-H bond cleavage at C-6 is involved in a rate-determining step) may be raised 

to explain the behavior of H-6 of cholesterol. Thus, a doubly-labeled compound, [3ct,6-2H2]cholesterol, ~,as 

chosen as the next substrate and synthesized from 5a-cholestane-3,6-dione in four steps (reduction with 

LiAID 4, protection of the 313-ol as benzoate, dehydration of the 613-ol with POCI 3, and deprotection of the 

benzoate, overall yield 35%). The 2H-NMR spectrum of 1, obtained after feeding the doubly-l~:beled 

cholesterol, is illustrated in Fig. 1, which exhibited two peaks at 8 4.2 (corresponding to H-3 of 1) and 8 2.9 

in a aT. 3:2 ratio. The upper-field signal again conf'Lrmed that most of the C-6 deuterium atom of the substrate 

migrated to the C-5 position. It should be noted that the behavior of the C-6 deuterium is essentially the same 

as that found in a 1:1 mixture of [41~-2H] - and [6-2H]cholesterols. The postulated deuterium isotope effect is, 

therefore, unlikely to be the main factor for the partial loss of the C-6 deuterium atom of 2; rather, the presence 

of an unidentified mechanism is suggested. A preliminary study indicated that 513-hydrogen of 1 is not 

exchanged by an exogenous proton source during extraction and isolation of 1 via enolization. Although it is 

not clear whether an alternative mechanism exists for the formation of the cis-A/B ring or the partial loss takes 

place during the 1,2-hydrogen migration in an enzyme cage, the partial disappearance of the C-6 deuterium 

atom of cholesterol is likely to occur during the formation of the cis-AIB ring. 

In conclusion, we have offered unambiguous evidence for the origin of 5~-hydrogen o, 20-hydroxy- 

ecdysone in Ajuga hairy roots, although the non-stoichiometric behavior of H-6 of cholesterol remains an open 

question. The observed 1,2-hydrogen shift agrees with the postulated 7-dehydrocholesterol 5ct,6~-epoxide 

intermediate (5), since it reasonably explaines the generation of 513-stereochemistry and 6-oxo function of 

513-ketol as well as 20-hydroxyecdysone. Attempted feeding of 5 was not successful since this compound 

rapidly decomposed under incubation conditions. 14 

The origin of 5[3-hydrogen in Ajuga hairy roots is in sharp contrast with that reported in the fem 

Polypodium vulgare in which 413-hydrogen of cholesterol migrates to the C-5 position. 15 We previously 

reported that H-6 of cholesterol was lost during the formation of ecdysone and 2-deoxyecdysone in Locust 

migratoria. 3 Further, Goodwin et al. reported that 4~-hydrogen of cholesterol is lost in Locust, Sistocerica 

migratoria. 16 Quite interestingly, these data suggest that the cis-A/B ring of ecdysteroids is biosynthesized not 

by a single mechanism but at least three mechanisms depending on the species of plants and insects. 
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